Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In this paper we consider which families of finite simple groups have the property that for each there exists such that, if and are normal subsets of with at least elements each, then every non-trivial element of is the product of an element of and an element of . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form where is fixed and . However, in the case and alternating this holds with an explicit bound on in terms of . Related problems and applications are also discussed. In particular we show that, if are non-trivial words, is a finite simple group of Lie type of bounded rank, and for , denotes the probability that where are chosen uniformly and independently, then, as , the distribution tends to the uniform distribution on with respect to the norm.more » « less
- 
            Abstract The deep theory of approximate subgroups establishes three-step product growth for subsets of finite simple groups $$G$$ of Lie type of bounded rank. In this paper, we obtain two-step growth results for representations of such groups $$G$$ (including those of unbounded rank), where products of subsets are replaced by tensor products of representations. Let $$G$$ be a finite simple group of Lie type and $$\chi $$ a character of $$G$$. Let $$|\chi |$$ denote the sum of the squares of the degrees of all (distinct) irreducible characters of $$G$$ that are constituents of $$\chi $$. We show that for all $$\delta>0$$, there exists $$\epsilon>0$$, independent of $$G$$, such that if $$\chi $$ is an irreducible character of $$G$$ satisfying $$|\chi | \le |G|^{1-\delta }$$, then $$|\chi ^2| \ge |\chi |^{1+\epsilon }$$. We also obtain results for reducible characters and establish faster growth in the case where $$|\chi | \le |G|^{\delta }$$. In another direction, we explore covering phenomena, namely situations where every irreducible character of $$G$$ occurs as a constituent of certain products of characters. For example, we prove that if $$|\chi _1| \cdots |\chi _m|$$ is a high enough power of $|G|$, then every irreducible character of $$G$$ appears in $$\chi _1\cdots \chi _m$$. Finally, we obtain growth results for compact semisimple Lie groups.more » « less
- 
            We define the notion of an almost polynomial identity of an associative algebra R R , and show that its existence implies the existence of an actual polynomial identity of R R . A similar result is also obtained for Lie algebras and Jordan algebras. We also prove related quantitative results for simple and semisimple algebras.more » « less
- 
            Let [Formula: see text] be a residually finite dimensional algebra (not necessarily associative) over a field [Formula: see text]. Suppose first that [Formula: see text] is algebraically closed. We show that if [Formula: see text] satisfies a homogeneous almost identity [Formula: see text], then [Formula: see text] has an ideal of finite codimension satisfying the identity [Formula: see text]. Using well known results of Zelmanov, we conclude that, if a residually finite dimensional Lie algebra [Formula: see text] over [Formula: see text] is almost [Formula: see text]-Engel, then [Formula: see text] has a nilpotent (respectively, locally nilpotent) ideal of finite codimension if char [Formula: see text] (respectively, char [Formula: see text]). Next, suppose that [Formula: see text] is finite (so [Formula: see text] is residually finite). We prove that, if [Formula: see text] satisfies a homogeneous probabilistic identity [Formula: see text], then [Formula: see text] is a coset identity of [Formula: see text]. Moreover, if [Formula: see text] is multilinear, then [Formula: see text] is an identity of some finite index ideal of [Formula: see text]. Along the way we show that if [Formula: see text] has degree [Formula: see text], and [Formula: see text] is a finite [Formula: see text]-algebra such that the probability that [Formula: see text] (where [Formula: see text] are randomly chosen) is at least [Formula: see text], then [Formula: see text] is an identity of [Formula: see text]. This solves a ring-theoretic analogue of a (still open) group-theoretic problem posed by Dixon,more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available